

| Effective from Session: 2020-21 |                                       |                            |                                                    |         |           |           |      |  |  |  |
|---------------------------------|---------------------------------------|----------------------------|----------------------------------------------------|---------|-----------|-----------|------|--|--|--|
| Course Code                     | PY401                                 | Title of the Course        | Mathematical Physics                               | L       | Т         | Р         | С    |  |  |  |
| Year                            | 1 <sup>st</sup>                       | Semester                   | 1 <sup>st</sup>                                    | 3       | 1         | 0         | 4    |  |  |  |
| Pre-Requisite                   | B.Sc. with Physics and<br>Mathematics | Co-requisite               |                                                    |         |           |           |      |  |  |  |
| Course Objectives               | The purpose of this postg physics.    | raduate course is to impar | rt advanced knowledge of mathematical methods used | d in di | fferent d | iscipline | s of |  |  |  |

|            | Course Outcomes                                                                                                                                                |  |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1        | Given square, symmetric or Hermitian matrices, the students will be able to determine their rank, inverse, adjoint, eigenvalue, eigenvectors and perform other |  |  |  |  |  |  |  |  |
| COI        | related operations.                                                                                                                                            |  |  |  |  |  |  |  |  |
| CO2        | For given mathematical functions satisfying per-requisite conditions, students will be able to perform their Laplace transform, Inverse Laplace transform,     |  |  |  |  |  |  |  |  |
| 02         | Fourier transform, Inverse Fourier transform and expand them in Fourier series.                                                                                |  |  |  |  |  |  |  |  |
| <b>G03</b> | For given complex functions, students will be able to identify their analytic behavior, classify different singularities, evaluate integrals using analytic    |  |  |  |  |  |  |  |  |
| COS        | continuation, Cauchy integral theorem, residue theorem and using gamma function.                                                                               |  |  |  |  |  |  |  |  |
| CO4        | Determine the series solution of Linear ordinary differential equations and second-order differential equations by power method and Frobenius method.          |  |  |  |  |  |  |  |  |
| CO5        | Explain the types, properties and symmetries of the groups and obtain their representations and multiplication table.                                          |  |  |  |  |  |  |  |  |

| Unit<br>No.    | Title of the Unit                                                                                                                                                                                                                                                                                                                                                                                | Content of Unit                                                                                                                                                                                                                                                                                                      | Contact<br>Hrs. | Mapped<br>CO |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|
| 1              | Matrices                                                                                                                                                                                                                                                                                                                                                                                         | Linear vector spaces, matrix spaces, linear operators, eigenvectors and eigenvalues, matrix diagonalization, special matrices                                                                                                                                                                                        | 08              | 1            |  |  |  |
| 2              | 2 Integral Transforms<br>and Fourier Series Integrals, integration of LT, shifting theorems, inverse LT. by partial fractions,<br>Fourier Series, Dirichlet's conditions, determination of Fourier coefficients, FS for arbitrary period,<br>half-wave expansions, Fourier integral theorem, Fourier sine and cosine transforms, Fourier Transforms<br>of Dirac Delta function, simple problems. |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
| 3              | 3 Complex Analysis Analysis Cauchy-Riemann conditions, classification of singularities, Cauchy's theorem, Taylor and Laurent expansions, analytic continuation, residue theorem, evaluation of definite integrals, summation of series, gamma function.                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
| 4              | Differential Equations<br>and special Functions                                                                                                                                                                                                                                                                                                                                                  | Linear ordinary differential equations and their singularities, series solution of second- order equations,<br>Legendre's polynomial, Hermite polynomial, Laguerre and Bessel functions, classical polynomials,<br>Sturm-Liouville problem, expansion in orthogonal functions, wave and heat equations in 2D and 3D. | 08              | 4            |  |  |  |
| 5              | Group Theory                                                                                                                                                                                                                                                                                                                                                                                     | Symmetries and groups, multiplication table and representations, Isomorphism and Homomorphism,<br>permutation group, translation and axial rotation groups, SO (2), SO (3), SU(2), lie algebra and<br>representation of a lie group, translation group and reciprocal lattice.                                       |                 |              |  |  |  |
| Referen        | ce Books:                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
| 1. G.B.        | Arfken, Mathematical Me                                                                                                                                                                                                                                                                                                                                                                          | thods for Physicists                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |
| 2. P. D.       | ennery and A. Krzywicki, I                                                                                                                                                                                                                                                                                                                                                                       | Mathematics for Physicists                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |
| 3. P.K.        | Chattopadhyay, Matrices a                                                                                                                                                                                                                                                                                                                                                                        | und Tensors in Physics                                                                                                                                                                                                                                                                                               |                 |              |  |  |  |
| 4. A.W         | . Joshi, Complex Variables                                                                                                                                                                                                                                                                                                                                                                       | and Applications                                                                                                                                                                                                                                                                                                     |                 |              |  |  |  |
| 5. R.V.        | Churchill and J.W. Brown                                                                                                                                                                                                                                                                                                                                                                         | , Complex Variables and Applications                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |
| 6. P.M.        | Morse and H. Feshbach, M                                                                                                                                                                                                                                                                                                                                                                         | Iethods of Theoretical Physics (Volume I and II)                                                                                                                                                                                                                                                                     |                 |              |  |  |  |
| e-Learn        | ing Source:                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
| 1. <u>http</u> | s://www.freebookcentre.n                                                                                                                                                                                                                                                                                                                                                                         | et/Physics/Mathematical-Physics-Books.html                                                                                                                                                                                                                                                                           |                 |              |  |  |  |
| 2. <u>http</u> | s://nptel.ac.in/courses/115                                                                                                                                                                                                                                                                                                                                                                      | 106086/                                                                                                                                                                                                                                                                                                              |                 |              |  |  |  |
| 3. <u>www</u>  | v.youtube.com                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2                                                              | 1   | 2   |     | 2   |     | 2   |     |     |      |      |      | 2    | 1    | 2    | 3    | 1    | 3    |
| CO2              | 3                                                              | 2   | 1   |     | 1   |     | 2   |     |     |      |      |      | 1    | 1    | -    | 2    | 3    | 1    |
| CO3              | 2                                                              | 1   | 2   |     | 2   |     | 1   |     |     |      |      |      | 1    | -    | 2    | 1    | 1    | 3    |
| CO4              | 3                                                              | 1   | 2   |     | 1   |     | 1   |     |     |      |      |      | 2    | 1    | 3    | 1    | 3    | 2    |
| CO5              | 3                                                              | 2   | 3   | 1   | 3   | 1   | 3   |     |     |      |      |      | 3    | 1    | 2    | 1    | 3    | 3    |



| Effective from Session: 2020-21 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                                         |   |   |   |   |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|---|---|---|--|--|--|
| Course Code                     | PY402                                                                                 | Title of the Course                                                                                                                                                                                                                                                                                                                                              | Title of the Course Classical Mechanics |   |   | Р | С |  |  |  |
| Year                            | 1 <sup>st</sup>                                                                       | Semester                                                                                                                                                                                                                                                                                                                                                         | 1 <sup>st</sup>                         | 3 | 1 | 0 | 4 |  |  |  |
| Pre-Requisite                   | B.Sc. with Physics and<br>Mathematics                                                 | Co-requisite                                                                                                                                                                                                                                                                                                                                                     |                                         |   |   |   |   |  |  |  |
| Course Objectives               | The purpose of this postg<br>many modern theories the<br>course, the student will abl | The purpose of this postgraduate course is to impart basic and key knowledge of classical physics, the Newtonian physics. Despite many modern theories the Newtonian mechanics remain essential part of every single in daily life. After successful completion of course the student will able to utilize the classical mechanics to the level of its validity. |                                         |   |   |   |   |  |  |  |

|     | Course Outcomes                                                                                                                                                |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Students will gain an understanding of the Newtonian mechanics and the limitation of it which introduce the concept of classical mechanics.                    |  |  |  |  |  |  |  |  |
| CO2 | Students will be able to represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulations of classical   |  |  |  |  |  |  |  |  |
| 02  | mechanics.                                                                                                                                                     |  |  |  |  |  |  |  |  |
| CO3 | students will gain an understanding of two-particle central force problem in relative and centre of mass coordinates, derive Kepler's planetary laws of motion |  |  |  |  |  |  |  |  |
| COS | and scattering in central force problem which develop a deep understanding of planetary motion.                                                                |  |  |  |  |  |  |  |  |
| CO4 | Students will create the own understanding of small oscillations which helps them to find frequency of small oscillations.                                     |  |  |  |  |  |  |  |  |
| CO5 | Students will be able to understand, what is the need of quantum mechanics? And the mathematics formulated as applied to physics.                              |  |  |  |  |  |  |  |  |

| Unit<br>No.   | Title of the Unit                                          | Content of Unit                                                                                                                                                                                                                                                                                    | Contact<br>Hrs. | Mapped<br>CO |
|---------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1             | Preliminaries                                              | Newtonian mechanics of one and many particle systems, Simple Pendulum with rigid support, Two connected masses with string passing over a pully, Virtual work, Rolling mass inside or outside a circular ring, Constraints; their classification, D'Alembert's principle, generalized coordinates. | 08              | 1            |
| 2             | Lagrangian and<br>Hamiltonian Formulations<br>of Mechanics | Calculus of variations, Hamilton's principle of least action, Lagrange's equations of motion, conservation laws, systems with a single degree of freedom, rigid body dynamics, symmetrical top, Hamilton's equations of motion, phase plots, fixed points and their stabilities.                   | 08              | 2            |
| 3             | Two-Body Central Force<br>Problem                          | Equation of motion and first integrals, classification of orbits, Kepler problem, scattering in central force field.                                                                                                                                                                               | 08              | 3            |
| 4             | Small Oscillations                                         | Concept of small oscillations, Expression of kinetic energy and potential energy for the problem of small oscillations, Frequencies of free vibration, and Normal coordinates. Linearization of equations of motion. Vibrations of coupled systems, vibrations of tri- atomic molecule.            | 08              | 4            |
| 5             | Hamiltonian Mechanics<br>and Chaos                         | Canonical transformations, Poisson brackets, Hamilton-Jacobi theory, action-angle variables, perturbation theory, integrable systems, introduction to chaotic dynamics.                                                                                                                            | 08              | 5            |
| Referen       | ce Books:                                                  |                                                                                                                                                                                                                                                                                                    |                 |              |
| 1. H.G        | oldstein, Classical Mechanics.                             |                                                                                                                                                                                                                                                                                                    |                 |              |
| 2. L.D.       | Landau and E.M. Lifshitz, Me                               | chanics                                                                                                                                                                                                                                                                                            |                 |              |
| 3. I.C. I     | Percival and D. Richards, Intro                            | oduction to Dynamics                                                                                                                                                                                                                                                                               |                 |              |
| 4. J.V.       | Jose and E.J. Saletan, Classica                            | l Dynamics: A Contemporary Approach                                                                                                                                                                                                                                                                |                 |              |
| 5. E.T.       | Whittaker, A Treatise on the A                             | nalytical Dynamics of Particles and Rigid Bodies                                                                                                                                                                                                                                                   |                 |              |
| 6. N.C.       | Rana and P.S. Joag, Classical                              | Mechanics                                                                                                                                                                                                                                                                                          |                 |              |
| e-Learn       | ing Source:                                                |                                                                                                                                                                                                                                                                                                    |                 |              |
| 1. <u>htt</u> | ps://nptel.ac.in/courses/115/10                            | 5/115105098/                                                                                                                                                                                                                                                                                       |                 |              |
| 2. <u>htt</u> | ps://nptel.ac.in/courses/115/10                            | 6/115106068/                                                                                                                                                                                                                                                                                       |                 |              |
| 3. <u>htt</u> | ps://nptel.ac.in/courses/122/10                            | 6/122106027/                                                                                                                                                                                                                                                                                       |                 |              |
|               |                                                            |                                                                                                                                                                                                                                                                                                    |                 |              |

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |     |      |      |       |      |       |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|-----|------|------|-------|------|-------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7  | PO8 | PO9  | PO10 | PO11  | PO12 | PSO1  | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2                                                              | 2   | 1   | 3   | 2   | 1   | 1    |     |      |      |       |      | 1     | 2    | 1    | 2    | 1    |      |
| CO2              | 3                                                              | 1   | 2   | 1   | 3   | 1   |      |     |      |      |       |      | 1     | 3    | 1    | 3    | 1    |      |
| CO3              | 2                                                              | 3   | 2   | 2   | 3   | 2   | 1    |     |      |      |       |      | 2     | 2    | 2    | 2    | 1    |      |
| CO4              | 3                                                              | 1   | 2   | 1   | 2   | 1   |      |     |      |      |       |      | 3     | 1    | 1    | 1    | 2    |      |
| CO5              | 3                                                              | 2   | 1   | 1   | 2   | 2   | 2    |     |      |      |       |      | 3     | 1    | 3    | 1    | 3    |      |
|                  |                                                                |     |     |     | 1 T | C.  | 1.4. |     | r. 1 |      | 1 4 4 | 1014 | 1.1 G | 1 4  |      |      |      |      |

#### 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2020-21 |                                                             |                                                            |                                                                                            |          |          |          |       |  |  |  |
|---------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|----------|----------|-------|--|--|--|
| Course Code                     | PY403                                                       | Title of the Course                                        | Title of the Course         Quantum Mechanics-I         I                                  |          |          |          | С     |  |  |  |
| Year                            | 1 <sup>st</sup>                                             | Semester                                                   | 1 <sup>st</sup>                                                                            | 3        | 1        | 0        | 4     |  |  |  |
| Pre-Requisite                   | B.Sc. with Physics and Mathematics                          | Co-requisite                                               |                                                                                            |          |          |          |       |  |  |  |
| Course Objectives               | This Course offers a syster<br>the student will able to wor | natic introduction to funda<br>k on the postulates of quar | mental non-relativistic quantum mechanics. After succentum mechanics for physical systems. | essful c | completi | on of co | ırse, |  |  |  |

|     | Course Outcomes                                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COI | Would be able to analyze the inadequacies of classical mechanics in atomic domain and provide the understanding of probabilistic outcomes in quantum          |
| COI | mechanics. Would be able to represent a problem in state vector notion.                                                                                       |
| CO2 | To analyse the central concepts and principles in quantum mechanics, such as the Schrödinger equation.                                                        |
| CO3 | To solve the Schrodinger's equation for time independent problems like free particle, particle in an infinite potential well, square potential well, the step |
| 003 | potential and potential barrier and the simple harmonic oscillator. Applying ladder operators to solve the quantum mechanical problems.                       |
| CO4 | To analyze the structure of the hydrogen atom and show an understanding of quantisation of angular momentum.                                                  |
| CO5 | Would be able to apply the symmetry operations and basis transformations                                                                                      |

| Unit<br>No.  | Title of the Unit                                                                                                                                                                                                                                                                                                                                                                               | Content of Unit                                                                                                                                                                                    | Contact<br>Hrs. | Mapped<br>CO |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1            | Introduction                                                                                                                                                                                                                                                                                                                                                                                    | Linear vector Space, Empirical basis, wave-particle duality, electron diffraction, notion of state vector and its probability interpretation                                                       | 08              | 1            |
| 2            | Structure of Quantum<br>Mechanics                                                                                                                                                                                                                                                                                                                                                               | Operators and observables, significance of eigen functions and eigenvalues, commutation relations, uncertainty principle, measurement in quantum theory.                                           | 08              | 2            |
| 3            | 3 Quantum Dynamics Time-dependent Schrödinger equation, stationary states and their significance, time- independent Schrödinger equation. Free-particle solution, wave packets, particle in a square well potential, transmission through a potential barrier, simple harmonic oscillator by wave equation and operator methods, charged particle in a uniform magnetic field, coherent states. |                                                                                                                                                                                                    |                 | 3            |
| 4            | Spherically Symmetric<br>Potentials                                                                                                                                                                                                                                                                                                                                                             | Separation of variables in spherical polar coordinates, orbital angular momentum, parity, spherical harmonics, free particle in spherical polar coordinates, square well potential, hydrogen atom. | 08              | 4            |
| 5            | Symmetry in Quantum<br>Mechanics                                                                                                                                                                                                                                                                                                                                                                | Symmetry operations and unitary transformations, conservation principles, space and time translations, rotation, space inversion and time reversal, symmetry and degeneracy.                       | 08              | 5            |
| Referen      | nce Books:                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                 |              |
| 1. C. (      | Cohen-Tannoudji, B. Diu and I                                                                                                                                                                                                                                                                                                                                                                   | F. Laloe, Quantum Mechanics (Volume I).                                                                                                                                                            |                 |              |
| 2. L.I.      | Schiff, Quantum Mechanics.                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                 |              |
| 3. E. I      | Merzbacher, Quantum Mechan                                                                                                                                                                                                                                                                                                                                                                      | ics                                                                                                                                                                                                |                 |              |
| 4. R.H       | P. Feynman, Feynman Lectures                                                                                                                                                                                                                                                                                                                                                                    | on Physics (Volume3)                                                                                                                                                                               |                 |              |
| 5. A.        | Messiah, Quantum Mechanics                                                                                                                                                                                                                                                                                                                                                                      | (Volume I)                                                                                                                                                                                         |                 |              |
| 6. R. S      | Shankar, Principles of Quantur                                                                                                                                                                                                                                                                                                                                                                  | n Mechanics                                                                                                                                                                                        |                 |              |
| e-Learn      | ing Source:                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |                 |              |
| 1. <u>ht</u> | tps://nptel.ac.in/courses/115/10                                                                                                                                                                                                                                                                                                                                                                | 2/115102023/                                                                                                                                                                                       |                 |              |
| 2. <u>ht</u> | tps://nptel.ac.in/courses/115/10                                                                                                                                                                                                                                                                                                                                                                | 4/115104096/                                                                                                                                                                                       |                 |              |

3. https://nptel.ac.in/courses/115/103/115103104/

4. <u>https://nptel.ac.in/courses/115/101/115101107/</u>

|                  |     |     |     |     |     | Co  | urse Ai | rticulat | ion Ma | trix: (M | lapping | of COs w | vith POs : | and PSOs | ;)   |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|----------|--------|----------|---------|----------|------------|----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8      | PO9    | PO10     | PO11    | PO12     | PSO1       | PSO2     | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 2   |     | 1   | 1   |     | 1       |          |        |          |         |          | 3          | 1        | 1    | 1    | 1    | 1    |
| CO2              | 3   | 1   | 1   |     | 1   |     | 2       |          |        |          |         |          | 3          | 2        | 1    | 1    | 1    | 1    |
| CO3              | 2   | 1   | 2   | 2   | 3   |     | 3       |          |        |          |         |          | 3          | 1        | 3    | 3    | 1    | 1    |
| CO4              | 3   | 2   | 3   |     | 1   |     | 2       |          |        |          |         |          | 3          | 1        | 3    | 3    | 1    | 1    |
| CO5              | 3   | 1   |     | 2   | 2   |     | 2       |          |        |          |         |          | 3          | 1        | 1    | 1    | 1    | 1    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |  |
|------------------------------------|--------------------|--|



| Effective from Session: 2020 | Effective from Session: 2020-21                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                         |   |   |   |   |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---|---|---|---|--|--|--|--|--|--|
| Course Code                  | PY404                                                                              | Title of the Course                                                                                                                                                                                                                                                                                                                                                                    | Statistical Mechanics-I | L | Т | Р | С |  |  |  |  |  |  |
| Year                         | 1 <sup>st</sup>                                                                    | Semester                                                                                                                                                                                                                                                                                                                                                                               | $1^{st}$                | 3 | 1 | 0 | 4 |  |  |  |  |  |  |
| Pre-Requisite                | B.Sc. with Physics and<br>Mathematics                                              | Co-requisite                                                                                                                                                                                                                                                                                                                                                                           |                         |   |   |   |   |  |  |  |  |  |  |
| Course Objectives            | The purpose of this postg<br>physics and mathematics<br>successful completion of c | The purpose of this postgraduate course is to impart basic and key knowledge of Statistical Mechanics. By using the principles of objects and mathematics students will be able to obtain quantitative relations which are very important for higher studies. After successful completion of course, the student will be able to explore the subject into their respective dimensions. |                         |   |   |   |   |  |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will gain an understanding of basic tools of statistics, their significance and practical applications in different domains of real life.                           |
| CO2 | Students will be able to apply the basic and advance mathematical concepts to solve the problems of thermodynamics.                                                          |
| CO3 | Students will gain understanding of fundamental concepts of classical statistical mechanics and apply them to solve thermodynamical problems from statistical point of view. |
| CO4 | Students will develop their own understanding of quantum statistical mechanics and solve the problems associated with the systems obeying Bose-Einstein statistics.          |
| CO5 | Students will be able to apply their knowledge to deal with the problems of the systems obeying Fermi-Dirac statistics.                                                      |

| Unit<br>No.  | Title of the Unit                                                                                                                                                                                                                                                                                                                                                                                                      | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1            | Elementary Probability<br>Theory                                                                                                                                                                                                                                                                                                                                                                                       | Random variables, mean, variance and standard deviations, Binomial, Poisson and Gaussian distributions, central limit theorem. problems                                                                                                                                                                                                                                                                                                                                                                        | 08              | 1            |  |  |  |  |  |
| 2            | Review of<br>Thermodynamics                                                                                                                                                                                                                                                                                                                                                                                            | Basic postulates of thermodynamics, Extensive and intensive variables The Euler Equation, The Gibbs-Duhem relation, Legendre transformations and thermodynamic potentials, Maxwell relations, applications of thermodynamics to (a) ideal gas, (b) magnetic material, and (c) Electromagnetic radiation.                                                                                                                                                                                                       | 08              | 2            |  |  |  |  |  |
| 3            | Formalism of Equilibrium<br>Statistical Mechanics                                                                                                                                                                                                                                                                                                                                                                      | Concept of phase space, Liouville's theorem, basic postulates of statistical mechanics, ensembles; microcanonical, canonical, grand canonical, and NPT ensembles and their connection to thermodynamic variables, fluctuations in energy density and no. of particles in various ensembles, applications of various ensembles, statistical mechanics of a system of harmonic oscillators, equation of state for a non-ideal gas, Vander Waals' equation of state, Meyer cluster expansion, Virial coefficients | 08              | 3            |  |  |  |  |  |
| 4            | 4 Quantum Statistics-1 The density matrix, application of quantum statistics to (i) an electron in a magnetic field (ii) A free particle in a box (iii) and a linear harmonic oscillator. Bose-Einstein statistics, applications of the formalism to; Ideal Bose gas, Debye theory of specific heat of solids, thermodynamics of black-body radiation, Bose-Einstein condensation, experimental studies on atomic BEC. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 5            | Quantum Statistics-2                                                                                                                                                                                                                                                                                                                                                                                                   | Fermi-Dirac statistics, Thermodynamic behavior of Ideal Fermi gas, thermionic emission, photoelectric emission, Pauli paramagnetism, electronic specific heat, white dwarf stars, mass radius relationship, Chandrashekhar limit.                                                                                                                                                                                                                                                                              | 08              | 5            |  |  |  |  |  |
| Referen      | ce Books:                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 1. K. H      | luang, Statistical Mechanics, J                                                                                                                                                                                                                                                                                                                                                                                        | ohn Wiley and Sons, 2 <sup>nd</sup> Edition, 1987.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |  |  |  |
| 2. R.K.      | Pathria, Statistical Mechanics                                                                                                                                                                                                                                                                                                                                                                                         | Academic Press, 3 <sup>rd</sup> Edition, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |  |
| 3. E.M.      | . Lifshitz and L.P. Pitaevskii, I                                                                                                                                                                                                                                                                                                                                                                                      | Physical Kinetics, Pergamon Press, 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |  |  |
| 4. D.A.      | McQuarrie, Statistical Mecha                                                                                                                                                                                                                                                                                                                                                                                           | nics, Harper and Row Publication, 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| 5. L.P.      | Kadanoff, Statistical Physics:                                                                                                                                                                                                                                                                                                                                                                                         | Statistics, Dynamics and Renormalization, World Scientific Press, 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| e-Learn      | ing Source:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 1. <u>ht</u> | tps://nptel.ac.in/courses/115/10                                                                                                                                                                                                                                                                                                                                                                                       | 03/115103113/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |  |  |  |  |  |
| 2. <u>ht</u> | tps://nptel.ac.in/courses/115/10                                                                                                                                                                                                                                                                                                                                                                                       | 06/115106111/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |  |  |  |  |  |
| 2 1.         | · // · 1 /D1D VDV /                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |

| 3. | https://youtu.be/D1RzvXDXyqA |
|----|------------------------------|
|    |                              |

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 2                                                              | 1   | 2   | 2   | 3   | 1   |     |     |      |      |      | 2    | 2    | 1    | 1    | 2    |      |
| CO2              | 3   | 3                                                              | 2   |     | 3   | 1   | 3   |     |     |      |      |      | 3    | 1    | 3    | 2    | 1    |      |
| CO3              | 2   | 1                                                              | 1   |     | 2   | 3   | 2   |     |     |      |      |      | 2    | 2    | 2    | 3    | 3    |      |
| CO4              | 3   | 2                                                              | 3   |     | 1   | 1   | 3   |     |     |      |      |      | 2    | 1    | 3    | 2    | 1    |      |
| CO5              | 2   | 3                                                              | 2   |     | 2   | 1   | 2   |     |     |      |      |      | 2    | 2    | 2    | 1    | 2    |      |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Session: 2020 | )-21                                                                               |                                                             |                                                                                                                 |                     |                     |           |               |
|------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-----------|---------------|
| Course Code                  | PY405                                                                              | Title of the Course                                         | Solid State Electronics                                                                                         | L                   | Т                   | Р         | С             |
| Year                         | 1 <sup>st</sup>                                                                    | Semester                                                    | 1 <sup>st</sup>                                                                                                 | 3                   | 1                   | 0         | 4             |
| Pre-Requisite                | B.Sc. with Physics and<br>Mathematics                                              | Co-requisite                                                |                                                                                                                 |                     |                     |           |               |
| Course Objectives            | To understand the fundam<br>and operation of semicono<br>BIT configurations and Bi | ental principle of Solid St<br>luctor devices. To learn the | tate Physics. To learn about the relationship between e<br>working and use of different types of diodes. To lea | electron<br>arn the | transpo<br>analysis | ort prope | rties<br>rent |

|     | Course Outcomes                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COI | Students shall be able to Apply the fundamental principle of Quantum Mechanics and SolidState Physics to understand the parameters of semiconductor                  |
| COI | materials also able to describe the relationship between electron transport properties and operation of semiconductor devices.                                       |
| CO2 | Students will be familiar with the working and use of different types of diodes, able to discuss the concepts of various biasing methods for BJT also able to        |
| 02  | Analyze the BJT configurations.                                                                                                                                      |
| CO3 | Students shall be able to Investigate the different configuration and obtain the device small signal model of BJTs, Analysis of a Transistor amplifier circuit using |
| 005 | h parameters.                                                                                                                                                        |
| CO4 | Students will be familiar with the construction and characteristics of JFET, transfer characteristic and Analyze the FET Biasing concepts, FET and MOSFET            |
| 004 | amplifier, small signal analysis.                                                                                                                                    |
| CO5 | Students shall be able to analyze and compare the features of different power electronic devices like SCR. UIT etc.                                                  |

| Unit<br>No.     | Title of the Unit                                                                                                                                                                                                                                  | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| 1               | Conduction Mechanism in<br>Metals & Semiconductors                                                                                                                                                                                                 | Mobility and conductivity, Density of states, Equilibrium concentration of electrons and holes- the Fermi level and energy distribution of carriers inside the bands- temperature dependence of carrier concentration inside the bands - Carrier transport in semiconductors - drift of carriers in electric fields, carrier flow by diffusion - constancy of Fermi level across junction, recombination, Einstein relation, continuity equation. | 08              | 1            |  |  |  |  |  |  |
| 2               | Junction Devices                                                                                                                                                                                                                                   | Theory of PN junction diode, Zener diode, Photodiode, Tunnel diode, PIN diode and Varactor diode, GUNN diode, Transistor biasing, CB, CE, CC configurations, Input output characteristics, Early Effect, Graphical analysis of the CE configuration, Thermal stabilization, The operating point, Bias stability.                                                                                                                                  | 08              | 2            |  |  |  |  |  |  |
| 3               | 3 Transistor Models Transistor hybrid model, h parameters, Analysis of a Transistor amplifier circuit using h parameters, Measurement and graphical determination of h parameters, Hybrid $\pi$ model, The re transistor model, Ebers-Moll models. |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |
| 4               | Field Effect Transistors                                                                                                                                                                                                                           | Construction and characteristics of JFET, transfer characteristic, The FET small signal model,<br>Measurement of gm and rd, JFET fixed bias, Self bias and voltage divider configurations, Use of<br>FET as voltage controlled resistor, JFET source follower (commonDrain) configuration, JFET<br>Common – Gate configuration, Depletion and enhancement type MOSFETs                                                                            | 08              | 4            |  |  |  |  |  |  |
| 5               | Power Electronics                                                                                                                                                                                                                                  | SCR: Its operation, characteristics, SCR as Series Static switch, variable resistance phase controller, battery charging regulator, as a temperature controller, as emergency lighting system, as voltage sensor, as sawtooth generator, silicon controlled switch, light activated SCR, Shockley diode, Diac, Triac, UJT Characteristics                                                                                                         | 08              | 5            |  |  |  |  |  |  |
| Referen         | ce Books:                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |
| 1. Solid        | l State Electronic Devices by I                                                                                                                                                                                                                    | 3.G. Streetman                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 2. Elect        | tronic Devices and Circuit The                                                                                                                                                                                                                     | ory by R.L. Boylested and L. Nashelsky                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |
| 3. Integ        | grated Electronics by J. Millma                                                                                                                                                                                                                    | in and C.C. Halkias                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |              |  |  |  |  |  |  |
| 4. Intro        | 4. Introduction to Semiconductor Devices by M. S. Tyagi                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |
| e-Learn         | e-Learning Source:                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |
| 1. <u>https</u> | ://nptel.ac.in/courses/117/103/                                                                                                                                                                                                                    | 117103063/                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |  |
| 2. https        | ://nptel.ac.in/courses/108/102/                                                                                                                                                                                                                    | 108102095/                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |  |

3. <u>https://nptel.ac.in/courses/108/102/108102145/</u>

|            |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| СО         | -   | _                                                              |     | _   |     |     | _   |     |     |      |      |      |      |      |      |      |      |      |
| CO1        | 2   | 2                                                              | 2   |     | 2   | 1   |     |     |     |      |      |      | 1    | 1    | 2    | 2    | 2    | 1    |
| CO2        | 3   | 3                                                              | 3   |     | 1   | 2   | 1   |     |     |      |      |      | 1    | 2    | 2    | 2    | 2    | 2    |
| CO3        | 2   | 1                                                              | 1   | 3   | 2   | 1   | 2   |     |     |      |      |      | 2    | 2    | 3    | 1    | 3    | 2    |
| CO4        | 3   | 2                                                              | 3   | 1   | 1   |     |     |     |     |      |      |      | 2    | 3    | 1    | 2    | 3    | 3    |
| CO5        | 2   | 3                                                              | 2   | 2   | 2   |     | 1   |     |     |      |      |      | 2    | 2    | 2    | 1    | 2    | 2    |
|            |     |                                                                |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |



| Effective from | n Session: 2020                                                                                                                 | )-21                               |                             |                                                         |       |   |   |   |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------------------------------------------------|-------|---|---|---|--|--|
| Course Code    |                                                                                                                                 | PY406                              | Title of the Course         | General and Optics Lab                                  | L     | Т | Р | С |  |  |
| Year           |                                                                                                                                 | 1 <sup>st</sup>                    | Semester                    | 1 <sup>st</sup>                                         | 0     | 0 | 8 | 4 |  |  |
| Pre-Requisite  |                                                                                                                                 | B.Sc. with Physics and Mathematics | Co-requisite                |                                                         |       |   |   |   |  |  |
| Course Objec   | tives                                                                                                                           | The purpose of this postgra        | duate course is to impart p | practical knowledge/measurements in optics and electron | nics. |   |   |   |  |  |
|                | Course Outcomes                                                                                                                 |                                    |                             |                                                         |       |   |   |   |  |  |
| CO1 Stude      | Student will be able to apply the theoretical understanding of Interference. Diffraction and LASER into practical applications. |                                    |                             |                                                         |       |   |   |   |  |  |
|                |                                                                                                                                 |                                    |                             |                                                         |       |   |   |   |  |  |

| CO2 | Student will learn to verify the principle of polarization and also how to produce circularly and elliptically polarized light. |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| CO3 | Student will learn the behavior of solid state devices like UJT and FET.                                                        |
| CO4 | Student will learn how to design a regulated power supply and CE amplifier                                                      |

CO5 Student will learn how to find the energy band gap of a semiconductor and also how to design digital logic elements using transistors.

| 1       Reflection Grating       To determine the wavelength of prominent lines of mercury with the help of reflection grating.       08       1         2       Laser       (a) To plot the power distribution of a laser beam. (b) To determine the divergence of a given laser source.       08       1         3       Babinet Compensator       The study of elliptically and circularly polarized light with help of Babinet's 08       2         4       Etalon       To determine the thickness of air film between glass plates, the integral part of the order of fringes at the center and the fractional part, if any, in an Etalon.       08       1         5       Fresnel's Formula       To verify Fresnel's formula of reflection for plane polarized light and to determine Brewster's angle for glass.       08       3         6       Characteristics of UJT and FET       To study the tansfer characteristics of UJT and FET.       08       4         8       Regulated Power Supply       To study the design of CE Amplifier.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Bo | Experiment<br>No. | Title of the Experiment                   | Content of Unit                                                                                                                                                        | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 2       Laser       (a) To plot the power distribution of a laser beam. (b) To determine the divergence of a given laser source.       08       1         3       Babinet Compensator       The study of elliptically and circularly polarized light with help of Babinet's compensator.       08       2         4       Etalon       To determine the thickness of air film between glass plates, the integral part of the order of fringes at the center and the fractional part, if any, in an Etalon.       08       1         5       Fresnel's Formula       To verify Fresnel's formula of reflection for plane polarized light and to determine Brewster's angle for glass.       08       3         6       Characteristics of UJT and FET       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         2.       Modern Digital Electronics by R.P.Jain       3       5         3.       Practical physics by Kumar P.R.S., PHI learning private limited       5                                                                                            | 1                 | Reflection Grating                        | To determine the wavelength of prominent lines of mercury with the help of reflection grating.                                                                         | 08              | 1            |  |  |  |  |
| 3       Babinet Compensator       The study of elliptically and circularly polarized light with help of Babinet's compensator.       08       2         4       Etalon       To determine the thickness of air film between glass plates, the integral part of the order of fringes at the center and the fractional part, if any, in an Etalon.       08       1         5       Fresnel's Formula       To verify Fresnel's formula of reflection for plane polarized light and to determine Brewster's angle for glass.       08       2         6       Characteristics of UJT and FET       To study the transfer characteristics of UJT and FET.       08       3         7       Common Emitter Amplifier       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Segulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         2       Modern Digital Electronics by V. Kumar       3       7       5       Fractical physics by Kumar P.R.S., PHI learning private limited                                                                                                                                            | 2                 | Laser                                     | (a) To plot the power distribution of a laser beam. (b) To determine the divergence of a given laser source.                                                           | 08              | 1            |  |  |  |  |
| 4       Etalon       To determine the thickness of air film between glass plates, the integral part of the order of fringes at the center and the fractional part, if any, in an Etalon.       08       1         5       Fresnel's Formula       To verify Fresnel's formula of reflection for plane polarized light and to 08       2         6       Characteristics of UJT and FET       To study the transfer characteristics of UJT and FET.       08       3         7       Common Emitter Amplifier       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         1.       Hand book of electronics by R.P.Jain       3                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                 | Babinet Compensator                       | The study of elliptically and circularly polarized light with help of Babinet's compensator.                                                                           | 08              | 2            |  |  |  |  |
| 5       Fresnel's Formula       To verify Fresnel's formula of reflection for plane polarized light and to determine Brewster's angle for glass.       08       2         6       Characteristics of UJT and FET       To study the transfer characteristics of UJT and FET.       08       3         7       Common Emitter Amplifier       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Books:       I       I       Hand book of electronics by V. Kumar       I         2.       Modern Digital Electronics by R.P.Jain       I       I         3.       Practical physics by Kumar P.R.S., PHI learning private limited       I       I         Image: Source:                                                                                                                                                                                                                                                                                                                                                                               | 4                 | Etalon                                    | To determine the thickness of air film between glass plates, the integral part of<br>the order of fringes at the center and the fractional part, if any, in an Etalon. | 08              | 1            |  |  |  |  |
| 6       Characteristics of UJT and FET       To study the transfer characteristics of UJT and FET.       08       3         7       Common Emitter Amplifier       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Books:         1.       Hand book of electronics by V. Kumar         2.       Modern Digital Electronics by R.P.Jain       3         Practical physics by Kumar P.R.S., PHI learning private limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | Fresnel's Formula                         | To verify Fresnel's formula of reflection for plane polarized light and to determine Brewster's angle for glass.                                                       | 08              | 2            |  |  |  |  |
| 7       Common Emitter Amplifier       To study the design of CE Amplifier.       08       4         8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Books:         1.       Hand book of electronics by V. Kumar         2.       Modern Digital Electronics by R.P.Jain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                 | Characteristics of UJT and FET            | To study the transfer characteristics of UJT and FET.                                                                                                                  | 08              | 3            |  |  |  |  |
| 8       Regulated Power Supply       To study the design of Regulated Power Supply.       08       4         9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Books:         1.       Hand book of electronics by V. Kumar         2.       Modern Digital Electronics by R.P.Jain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                 | Common Emitter Amplifier                  | To study the design of CE Amplifier.                                                                                                                                   | 08              | 4            |  |  |  |  |
| 9       Four Probe Method       Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.       08       5         10       Logic Gates       Design of simple logic gates using transistors.       08       5         Reference Books:         1.       Hand book of electronics by V. Kumar         2.       Modern Digital Electronics by R.P.Jain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                 | <b>Regulated Power Supply</b>             | To study the design of Regulated Power Supply.                                                                                                                         | 08              | 4            |  |  |  |  |
| 10     Logic Gates     Design of simple logic gates using transistors.     08     5       Reference Books:       1.     Hand book of electronics by V. Kumar       2.     Modern Digital Electronics by R.P.Jain       3.     Practical physics by Kumar P.R.S., PHI learning private limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                 | Four Probe Method                         | Determination of band gap of semiconductor from temperature dependence of resistivity using Four Probe Method.                                                         | 08              | 5            |  |  |  |  |
| Reference Books:         1. Hand book of electronics by V. Kumar         2. Modern Digital Electronics by R.P.Jain         3. Practical physics by Kumar P.R.S., PHI learning private limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                | Logic Gates                               | Design of simple logic gates using transistors.                                                                                                                        | 08              | 5            |  |  |  |  |
| Hand book of electronics by V. Kumar     Modern Digital Electronics by R.P.Jain     Practical physics by Kumar P.R.S., PHI learning private limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference Boo     | ks:                                       |                                                                                                                                                                        |                 |              |  |  |  |  |
| Modern Digital Electronics by R.P.Jain     Practical physics by Kumar P.R.S., PHI learning private limited  e-Learning Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. Hand book o    | f electronics by V. Kumar                 |                                                                                                                                                                        |                 |              |  |  |  |  |
| 3. Practical physics by Kumar P.R.S., PHI learning private limited  e-Learning Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Modern Digi    | tal Electronics by R.P.Jain               |                                                                                                                                                                        |                 |              |  |  |  |  |
| e-Learning Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Practical phy  | sics by Kumar P.R.S., PHI learning priv   | ate limited                                                                                                                                                            |                 |              |  |  |  |  |
| e-Learning Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                           |                                                                                                                                                                        |                 |              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e-Learning Sou    | e-Learning Source:                        |                                                                                                                                                                        |                 |              |  |  |  |  |
| 1. https://circuitdigest.com/electronic-circuits/designing-and-gate-using-transistors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. https://circu  | itdigest.com/electronic-circuits/designin | g-and-gate-using-transistors                                                                                                                                           |                 |              |  |  |  |  |

<u>https://www.circuitstoday.com/characteristics-of-jfets</u>
 <u>https://www.youtube.com/watch?v=HG22Y0KrvI0</u>

4. http://www.rossnazirullah.com/BSc/BSc.htm

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2                                                              | 2   | 2   | 1   | 2   | 1   | 1   |     |     |      |      |      | 2    | 1    | 2    | 3    | 1    | 2    |
| CO2              | 3                                                              | 3   | 2   |     | 1   | 1   | 2   |     |     |      |      |      | 3    | 1    | 2    | 2    | 1    | 2    |
| CO3              | 2                                                              | 2   | 3   | 1   | 2   |     | 3   |     |     |      |      |      | 1    | 2    | 2    | 1    | 3    | 1    |
| CO4              | 3                                                              | 2   | 1   |     | 1   |     | 1   |     |     |      |      |      | 2    | 1    | 2    | 3    | 1    | 2    |
| CO5              | 2                                                              | 2   | 2   | 1   | 2   | 1   | 1   |     |     |      |      |      | 3    | 2    | 1    | 2    | 2    | 2    |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|

Ι



| Effective from Session: 2020-21 |                                                         |                                                        |                                                             |       |         |         |     |  |  |
|---------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------|---------|---------|-----|--|--|
| Course Code                     | PY407                                                   | Title of the Course                                    | Quantum Mechanics-II                                        | L     | Т       | Р       | С   |  |  |
| Year                            | 1 <sup>st</sup>                                         | Semester                                               | $2^{nd}$                                                    | 3     | 1       | 0       | 4   |  |  |
| Pre-Requisite                   | B.Sc. with Physics and Mathematics                      | Co-requisite                                           |                                                             |       |         |         |     |  |  |
| Course Objectives               | This course is aimed at pr<br>introducing some advanced | oviding a comprehensive<br>topics with illustrative ex | review of the core concepts of quantum mechanics th amples. | rough | problem | solving | and |  |  |

|     | Course Outcomes                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Ability to solve problems related to angular momentum and determine the coefficients corresponding to addition of angular momentum.                                                                                                         |  |  |  |  |  |  |  |  |
| CO2 | Students can account for the phenomena involved in the Zeeman effect and spin-orbit coupling, what is meant by identical particles and quantum statistics, and they will be able to perform calculations on systems of identical particles. |  |  |  |  |  |  |  |  |
| CO3 | Students will be able to develop the solution of actual or perturbed problems based on exact problems or Hamiltonians.                                                                                                                      |  |  |  |  |  |  |  |  |
| CO4 | Analysis of scattering and differential cross section of wave packets.                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| CO5 | Students will be able to solve Dirac's equation. They will be able to analyze the spin orbit interaction comprehensively.                                                                                                                   |  |  |  |  |  |  |  |  |

| Unit<br>No.     | Title of the Unit                                                                                                                                                                                                                                                              | Content of Unit                                                                                                                                                                                                                                                                                 | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 1               | 1Angular MomentumRotation operators, angular momentum algebra, eigen values of $J^2$ and $J_Z$ , Matrix representation of<br>$S_X$ , $S_Y$ , $S_Z$ , $J_X$ , $J_Y$ , $J_Z$ , $J^2$ , spinors and Pauli matrices, addition of angular momenta, Clebsch-<br>Gordon coefficients. |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 2               | Identical Particles and<br>Time-independent<br>Approximation MethodsIndistinguishability, symmetric and anti-symmetric wave functions, incorporation of spin, Slater<br>determinants, Pauli exclusion principle. Non-degenerate perturbation theory, degenerate case,<br>      |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 3               | 3 Time-dependent Problems Schrödinger and Heisenberg picture, time-dependent perturbation theory, transition probability calculations, golden rule, adiabatic approximation, sudden approximation, beta decay as an example.                                                   |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 4               | Scattering Theory                                                                                                                                                                                                                                                              | Differential cross-section, scattering of a wave packet, integral equation for the scattering amplitude, Born approximation, method of partial waves, low energy scattering and bound states, resonance scattering.                                                                             | 08              | 4            |  |  |  |  |
| 5               | Relativistic Quantum<br>Mechanics                                                                                                                                                                                                                                              | vistic Quantum<br>nics Klein-Gordon equation, Dirac equation and its plane wave solution, Significance of negative<br>energy solutions, Spin angular momentum of the Dirac particle, Electron in EM fields, Spin- orbit<br>interaction, Dirac equation for a particle in a central force field. |                 |              |  |  |  |  |
| Referen         | ce Books:                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 1. C. C         | ohen-Tannoudji, B. Diu and F.                                                                                                                                                                                                                                                  | Laloe, Quantum Mechanics (Volume II).                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |
| 2. A. M         | Iessiah, Quantum Mechanics (                                                                                                                                                                                                                                                   | Volume I)                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |  |
| 3. Flüg         | ge, Practical Quantum Mecha                                                                                                                                                                                                                                                    | nics                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |
| 4. J.J. S       | Sakurai, <i>Modern Quantum Me</i>                                                                                                                                                                                                                                              | chanics                                                                                                                                                                                                                                                                                         |                 |              |  |  |  |  |
| 5. K.G          | ottfried, Quantum Mechanics                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
|                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| e-Learn         | ing Source:                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 1. <u>https</u> | ://nptel.ac.in/courses/115/103/                                                                                                                                                                                                                                                | 115103104/                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |
| 2. <u>https</u> | ://nptel.ac.in/courses/115/102/                                                                                                                                                                                                                                                | 115102023/                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |

3. https://nptel.ac.in/courses/115/108/115108074/

|            | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO4 | PSO5 | PSO6 | PSO7 |
| CO         |                                                                |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
| CO1        | 3                                                              | 1   | 1   |     | 1   |     | 1   |     |     |      |      |      | 3    | 2    | 1    | 3    | 1    |      |
| CO2        | 3                                                              | 1   | 1   |     | 1   |     | 1   |     |     |      |      |      | 3    | 2    |      | 1    | 1    |      |
| CO3        | 3                                                              | 1   | 1   |     | 1   |     | 1   |     |     |      |      |      | 3    | 2    |      | 3    | 1    |      |
| CO4        | 3                                                              | 1   | 1   |     | 1   |     | 1   |     |     |      |      |      | 3    | 2    | 2    |      | 1    |      |
| CO5        | 3                                                              | 1   | 1   |     | 1   |     | 1   |     |     |      |      |      | 3    | 2    | 3    | 3    | 1    |      |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2020 | )-21                                                                                                                      |                                                                                                                |                                                                                                                                                                            |                                 |                                  |                                |                        |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------------|------------------------|
| Course Code                  | PY408                                                                                                                     | Title of the Course         Electromagnetic Theory                                                             |                                                                                                                                                                            |                                 |                                  | Р                              | С                      |
| Year                         | 1 <sup>st</sup>                                                                                                           | Semester                                                                                                       | $2^{nd}$                                                                                                                                                                   | 3                               | 1                                | 0                              | 4                      |
| Pre-Requisite                | B.Sc. with Physics and<br>Mathematics                                                                                     | Co-requisite                                                                                                   |                                                                                                                                                                            |                                 |                                  |                                |                        |
| Course Objectives            | The purpose of this postgr<br>theory and emphasis on the<br>obtain quantitative relation<br>explore subject into their re | aduate course is to impart<br>e inter-relationship betwee<br>s which are very importan<br>espective dimensions | basic and key knowledge and basic skills required to<br>n Electricity and Magnetism. By using the principal of<br>t for higher studies. After successful completion of cou | underst<br>physics<br>trse, the | tand elects and material student | tromagr<br>thematio<br>will be | letic<br>cs to<br>able |

|     | Course Outcomes                                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will impart knowledge on the concepts of electrostatics, electric potential, energy density and their applications and understand the basic mathematical |
| COI | concepts related to electromagnetic vector fields.                                                                                                                |
| CO2 | Students will be able understand the methods for solving boundary value problems for magnetic field and to evaluate the Biot-Savat law, Ampere's law.             |
| CO3 | Students will gain an understanding of Maxwell's equations and be able to apply them to solving practical electromagnetic fields problems.                        |
| CO4 | Students will gain an understanding of laws governing electrodynamics, plane wave propagation in different media, power flow, polarization, transmission and      |
| CO4 | reflection at an interface, transmission lines, waveguides.                                                                                                       |
| CO5 | Students will understand the fundamental equations acquire a sense of unity in physics at a fundamental level by embracing the concepts of special relativity as  |
| CO5 | emerged through the laws of electrodynamics and equipped with the necessary mathematical concepts to be able to solve relative problems.                          |

| Unit<br>No.        | Title of the Unit                                                                                                                                                                                                                                                   | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1                  | Electrostatics                                                                                                                                                                                                                                                      | Differential equation for electric field, Poisson and Laplace equations, formal solution for potential with Green's functions, boundary value problems, examples of image method and Green's function method, solutions of Laplace equation in cylindrical and spherical coordinates by orthogonal functions, dielectrics, polarization of a medium, electrostatic energy.                                | 08              | 1            |  |  |  |  |  |
| 2                  | Magnetostatics                                                                                                                                                                                                                                                      | Biot-Savart law, differential equation for static magnetic field, magnetic field from localized current distributions, examples of magnetostatic problems, Faraday's law of induction, magnetic energy of steady current distributions.                                                                                                                                                                   | 08              | 2            |  |  |  |  |  |
| 3                  | 3 Maxwell's Equations Displacement current, Maxwell's equations, vector and scalar potentials, gauge symmetry,<br>Coulomb and Lorentz gauges, electromagnetic energy and momentum, conservation laws,<br>inhomogeneous wave equation and Green's function solution. |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |
| 4                  | Electromagnetic Waves                                                                                                                                                                                                                                               | Plane waves in a dielectric medium, reflection and refraction at dielectric interfaces, frequency dispersion in dielectrics and metals, dielectric constant and anomalous dispersion, wave propagation in one dimension, group velocity, metallic wave guides, boundary conditions at metallic surfaces, propagation modes in wave guides, resonant modes in cavities.                                    | 08              | 4            |  |  |  |  |  |
| 5                  | Radiation and Covariant<br>Formulation of<br>Electrodynamics                                                                                                                                                                                                        | Field of a localized oscillating source, fields and radiation in dipole and quadrupole approximations, antenna, radiation by moving charges, Lienard-Wiechert potentials, total power radiated by an accelerated charge, Lorentz formula. Four-vectors relevant to electrodynamics, electromagnetic field tensor and Maxwell's equations, transformation of fields, fields of uniformly moving particles. | 08              | 5            |  |  |  |  |  |
| Referen            | ce Books:                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |
| 1. J.D.            | . Jackson, Classical Electrody                                                                                                                                                                                                                                      | namics                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |
| 2. D.J.            | . Griffiths, Introduction to Elec                                                                                                                                                                                                                                   | ctrodynamics                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |  |  |  |
| 3. J.R.            | Reitz, F.J. Milford and R.W.                                                                                                                                                                                                                                        | Christy, Foundations of Electromagnetic Theory                                                                                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| 4. W.K             | .H. Panofsky and M. Phillips,                                                                                                                                                                                                                                       | Classical Electricity and Magnetism                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |  |  |
| 5. F.F.            | . Chen, Introduction to Plasma                                                                                                                                                                                                                                      | Physics and Controlled Fusion                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |
| e-Learning Source: |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |
| https://np         | https://nptel.ac.in/courses/115/101/115101004/                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |
| https://np         | tel.ac.in/courses/115/104/1151                                                                                                                                                                                                                                      | 104088/                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |
| https://np         | tel.ac.in/courses/115/106/1151                                                                                                                                                                                                                                      | 106122/                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |
| 1                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 1                                                              | 1   |     | 2   | 1   | 2   |     |     |      |      |      | 3    | 2    | 1    | 1    | 2    | 1    |
| CO2              | 3   | 1                                                              | 2   | 1   | 3   |     | 3   |     |     |      |      |      | 2    | 3    | 3    | 1    | 3    | 2    |
| CO3              | 2   | 3                                                              | 2   |     | 3   | 2   | 2   |     |     |      |      |      | 3    | 1    | 2    | 2    | 2    | 1    |
| CO4              | 3   |                                                                | 1   | 1   | 2   |     | 1   |     |     |      |      |      | 2    | 2    | 3    | 1    | 3    | 3    |
| CO5              | 1   | 2                                                              | 1   | 2   | 2   | 1   |     |     |     |      |      |      | 3    | 2    | 2    | 1    | 2    | 3    |



| Effective from Session: 2020 | Effective from Session: 2020-21                          |                                                            |                                                                                                                    |         |                     |                  |       |  |  |  |  |  |
|------------------------------|----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|---------------------|------------------|-------|--|--|--|--|--|
| Course Code                  | PY409                                                    | Title of the Course                                        | Condensed Matter Physics                                                                                           | L       | Т                   | Р                | С     |  |  |  |  |  |
| Year                         | 1 <sup>st</sup>                                          | Semester                                                   | $2^{nd}$                                                                                                           | 3       | 1                   | 0                | 4     |  |  |  |  |  |
| Pre-Requisite                | B.Sc. with Physics and Mathematics                       | Co-requisite                                               |                                                                                                                    |         |                     |                  |       |  |  |  |  |  |
| <b>Course Objectives</b>     | This course aims to establi<br>particular quantum mechan | sh fundamental concepts in<br>nics, classical mechanics, e | n condensed matter physics and applies the physics you<br>lectromagnetism and statistical mechanics) to these real | have lo | earned p<br>materia | reviously<br>ls. | y (in |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Examine the electric and thermal transport phenomena in solids based on the free electron theory.                                                                                                                   |
| CO2 | Conceptualize the different types of bonds that exists in nature, the problem of X-ray diffraction and appreciate the beauty of Bragg's treatment along with the contribution of Von Laue and Miller in solving it. |
| CO3 | Students will understand the role of electronic energy band structures of solids in governing various electrical and optical properties of materials.                                                               |
| CO4 | Students will create the own understanding of molecular vibrations in determining thermal properties of materials.                                                                                                  |
| CO5 | Explain the origin of superconducting and magnetic properties of materials and compare on the basis of quantum theory.                                                                                              |

| Unit<br>No.     | Title of the Unit                                            | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                        | Contact<br>Hrs. | Mapped<br>CO |
|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1               | Free Electron Theory and<br>Transport Phenomena in<br>solids | Drude theory, Review of Sommerfeld model of Free electron gas, critique of free-electron model,<br>Boltzmann Transport Equations, Electrical and Thermal Conductivity of metals, Wiedemann-Franz<br>law, Hall effect and magneto-resistance, Thermo-electric effects.                                                                                                                                                                  | 08              | 1            |
| 2               | Bonding in Solids and<br>Crystal Lattices                    | Bond classifications: Nature of bonding, ionic crystals, cohesive energy and Madelung Constant, covalent, molecular and hydrogen bonding. Bravais lattices and their classification. Symmetry operations, reciprocal lattice, X-ray diffraction, Bragg's law, Von Laue's formulation, Miller indices, relation between Miller Indices of a family of planes and inter planar spacing.                                                  | 08              | 2            |
| 3               | Band Theory of Solids                                        | Energy spectra in atoms, molecules and solids, formation of energy bands, comparative picture of bands structure of metals, semiconductors and insulators. Electron wave equation in a periodic potential (Bloch theorem), Kronig Penney model. Motion of electron in a one dimensional periodic potential, crystal momentum and effective mass. Brillouin zones and Fermi surface. Cyclotron Resonance and De Hass Van Alphen Effect. | 08              | 3            |
| 4               | Lattice Dynamics                                             | Wave motion of one dimensional atomic lattice, group velocity and phase velocity, vibrations of a one dimensional lattice with two atoms per primitive cell, normal modes of vibrations, density of states, quantization of vibrations (Phonons), inelastic scattering of photons by long wavelength phonons. Thermal properties of solids: Specific heat, Dulong Pettit's law, Einstein and Debye model of specific heat.             | 08              | 4            |
| 5               | Magnetism and<br>Superconductivity                           | Origin of magnetism, classical theory of diamagnetism and paramagnetism, ferromagnetism, hysteresis, energy loss, Curie law, Weiss theory of ferromagnets and Curie-Weiss law. Superconductivity: Thermodynamics of superconductors, London's equation and Meissner effect, Type-I and Type-II superconductors                                                                                                                         | 08              | 5            |
| Referen         | ce Books:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 1. C. K         | ittel, Introduction to Solid Star                            | te Physics                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
| 2. N.W          | Ashcroft and N.D. Mermin,                                    | Solid State Physics.                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
| 3. J.M.         | Ziman, Principles of the Theo                                | ry of Solids.                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |
| 4. A.J.         | Dekker, Solid State Physics                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 5. G. B         | urns, Solid State Physics                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 6. M.P.         | . Marder, Condensed Matter P                                 | hysics.                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |
|                 | •                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| e-Learn         | ung Source:                                                  | (115102102)                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |
| 1. <u>nttps</u> | s://npte1.ac.in/courses/115/103/                             | 115105102/                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
| 2. <u>nttps</u> | s://nptel.ac.in/courses/115/106/                             | 115100001/                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
| 3. <u>nttps</u> | s://npte1.ac.1n/courses/115/105/                             | 115105099/                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 3                                                              | 1   |     | 2   | 2   | 3   |     |     |      |      |      | 3    | 1    | 1    | 1    | 1    | 1    |
| CO2              | 2   | 3                                                              | 2   | 1   | 2   | 2   | 2   |     |     |      |      |      | 2    | 1    | 3    | 1    | 1    | 2    |
| CO3              | 3   | 1                                                              | 2   |     | 3   | 1   |     |     |     |      |      |      | 1    | 2    | 2    | 2    | 2    | 1    |
| CO4              | 2   | 1                                                              | 1   |     | 2   | 1   | 2   |     |     |      |      |      | 3    | 2    | 2    | 2    | 2    | 2    |
| CO5              | 3   | 3                                                              | 2   |     | 2   | 2   | 3   |     |     |      |      |      | 2    | 3    | 3    | 2    | 3    | 2    |



| Effective from Session: 2020 | )-21                                                    |                                                                                      |                                                                                                                                                                           |                       |                      |                        |               |
|------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------------------|---------------|
| Course Code                  | PY410                                                   | Title of the Course                                                                  | Nuclear and Particle Physics                                                                                                                                              | L                     | Т                    | Р                      | С             |
| Year                         | 1 <sup>st</sup>                                         | Semester                                                                             | $2^{nd}$                                                                                                                                                                  | 3                     | 1                    | 0                      | 4             |
| Pre-Requisite                | B.Sc. with Physics and<br>Mathematics                   | Co-requisite                                                                         |                                                                                                                                                                           |                       |                      |                        |               |
| Course Objectives            | The purpose of this postg<br>Nuclear Physics and its fu | raduate course is to impar<br>undamentals reactions to<br>fully completion of course | rt basic and key knowledge of Nuclear Physics. By u<br>obtain quantitative relations which are very importan<br>the student will be able explore the subject into their r | sing the<br>t for his | e basic<br>igher stu | principle<br>idies and | s of<br>1 its |

|     | Course Outcomes                                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will gain an understanding of the basic Nuclear properties and Nuclear forces involved in the formation of a nucleus.                                    |
| CO2 | Students will be able to develop a deep understanding of various phenomenon of Nuclear Reactions, Type of reactions and counters and detectors.                   |
| CO3 | Students will gain an understanding of the different nuclear models and decay theories.                                                                           |
| CO4 | Students will be able to understand the classification and properties of elementary particles various types of interactions and conservation rules in fundamental |
| 04  | interactions.                                                                                                                                                     |
| CO5 | Students will gain an understanding of approaches to the Particle Physics, Strange particles and its conservation.                                                |

| Unit<br>No. | Title of the Unit                                                                                                                               | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1           | Basic Nuclear properties<br>and Nuclear forces                                                                                                  | Mass, Charge, and Constituents of the nucleus, Nuclear size and distribution of nucleons, Angular momentum, Parity and symmetry, Magnetic dipole moment and electric quadrupole moment, Characteristics of nuclear forces-Range and strength, Ground and exited states of deuteron, Magnetic dipole moment and electric quadrupole moment of deuteron -The tensor forces. Scattering length, Yukawa hypothesis | 08              | 1            |  |  |  |  |  |
| 2           | 2 Nuclear reactions and Detectors Multiple Counter, Semiconductor detectors. Nuclear Reactions, Geiger-Muller Counter, Semiconductor detectors. |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 3           | Nuclear disintegration and models                                                                                                               | Review of the Semi-empirical mass formula, Liquid drop model, Single particle Shell model.<br>Tunneling theory of alpha decay, Fermi theory of Beta decay, inverse beta process, Double- beta<br>decay, Different types of neutrinos: the two neutrino experiment, The neutrino helicity, Gamma<br>decay, Fermi and Gammow- Teller selection rules.                                                            | 08              | 3            |  |  |  |  |  |
| 4           | Particle Physics I                                                                                                                              | Classification and properties of elementary particles, Leptons, Baryons, mesons, particles and antiparticles, excited states and resonances, Various types of interactions, gravitational, electromagnetic, weak and strong interactions and their mediating quanta, Conservation rules in fundamental interactions.                                                                                           | 08              | 4            |  |  |  |  |  |
| 5           | Particle Physics II                                                                                                                             | Charge symmetry and charge independence, Parity and charge conjugation, Conservation of parity<br>and its violation in different types of interactions. Gell-Mann Nishijima formula, Strange particles,<br>associated production, strangeness and decay modes of charged Kaons, Isospin and its conservation.<br>Idea of eight fold way and quarks                                                             | 08              | 5            |  |  |  |  |  |
| Referen     | ce Books:                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 1. G.D.     | Coughlan and J.E. Dodd, The                                                                                                                     | Ideas of Particle Physics                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |  |
| 2. D.G      | riffiths, Introduction to Eleme                                                                                                                 | ntary Particles                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 3. D.H.     | Perkins, Introduction to High                                                                                                                   | Energy Physics                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |  |
| 4. I. Ka    | plan, Nuclear Physics                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 5. R.R.     | Roy and B.P. Nigam, Nuclear                                                                                                                     | Physics                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| 6. M.A      | 6. M.A. Preston and R.K. Bhaduri, <i>Structure of the Nucleus</i>                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 7. M.G      | /. M.G. BOWIEF, NUCLEAR PHYSICS                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| e-Learn     | ing Source:                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 1. https    | ://archive.nptel.ac.in/courses/1                                                                                                                | .15/103/115103101/                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |  |  |  |
| 2. https    | . https://archive.nptel.ac.in/courses/115/104/115104043/                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |
| 3. https    | ://archive.nptel.ac.in/courses/1                                                                                                                | 15/102/115102017/                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |  |  |  |

|                  |     |     |     |     |     | Co  | arse Ar | ticulat | ion Ma | trix: (M | lapping | of COs w | ith POs a | and PSOs | )    |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|---------|--------|----------|---------|----------|-----------|----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9    | PO10     | PO11    | PO12     | PSO1      | PSO2     | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 3   | 2   | 1   |     | 1   | 3   | 2       |         |        |          |         |          | 3         | 3        | 2    | 2    | 3    | 3    |
| CO2              | 2   | 2   | 3   |     | 3   | 2   | 3       |         |        |          |         |          | 2         | 1        | 1    | 1    | 3    | 3    |
| CO3              | 3   | 1   | 2   |     | 1   | 3   | 2       |         |        |          |         |          | 2         | 1        | 1    | 1    | 3    | 3    |
| CO4              | 2   | 2   | 3   |     | 2   | 1   | 3       |         |        |          |         |          | 3         | 3        | 2    | 2    | 3    | 3    |
| CO5              | 2   | 1   | 1   |     | 1   | 2   | 2       |         |        |          |         |          | 3         | 3        | 2    | 2    | 3    | 3    |
|                  |     |     |     |     | 4 - | a   |         |         |        |          |         |          |           |          |      |      |      |      |

#### 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Sign & Seal of HoD



| Effective from Session: 2020-21 |                                                                                                                                                                                                                                                |                     |                     |   |   |   |   |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---|---|---|---|--|--|--|
| Course Code                     | PY411                                                                                                                                                                                                                                          | Title of the Course | Digital Electronics | L | Т | Р | С |  |  |  |
| Year                            | 1 <sup>st</sup>                                                                                                                                                                                                                                | Semester            | $2^{nd}$            | 3 | 1 | 0 | 4 |  |  |  |
| Pre-Requisite                   | B.Sc. with Physics and<br>Mathematics                                                                                                                                                                                                          | Co-requisite        |                     |   |   |   |   |  |  |  |
| Course Objectives               | 1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.           2. To prepare students to perform the analysis and design of various digital electronic circuits. |                     |                     |   |   |   |   |  |  |  |

|     | Course Outcomes                                                                                                                                                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Student shall be able to understand the basics of operational amplifier (Op-Amp) along with examine, analyze and evaluate its various version including voltage source rectifiers and filters.                                                                                               |
| CO2 | For the given logic families of integrated circuits, student shall be able to understand its specifications. Students would examine, analyze the DTL, TTL, MOSFET, CMOS and evaluate universal gates.                                                                                        |
| CO3 | Given a number, students shall be able to represent various conversions in mathematical form. Student shall be able to analyze and evaluate various theorems and K- Map method and able to design various logic circuits.                                                                    |
| CO4 | For a given Combinational circuit and sequential circuits, student shall be able to understand its various building blocks and examine, analyze and evaluate adders, Subtractor, multiplexer, encoders, multivibrator, A/D and D/A converter and last able to design various logic circuits. |
| CO5 | For a given 8085 microprocessor, student would be able to understand and analyze its architecture, Interfacing devices, Instruction set and programming.                                                                                                                                     |

| Unit<br>No. | Title of the Unit                                                     | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| 1           | Operational Amplifier<br>Basic and Application                        | Review of Feedback, Linear Circuit, Op-Amp Basic, Inverting and Non-inverting amplifiers, Unity follower, Summing amplifiers, Integrator, Differentiator, Op- Amp Specifications- DC Off- set parameter, Frequency parameters, Imperfection in Op- Amplifier application- multiple stage gain, Voltage summing and subtraction, Current controlled voltage source, Voltage controlled current source, Rectifiers and Limiters, Comparators and Schmitt Triggers, Active filters.                                                                                                                                                                                   | 08              | 1            |  |  |  |  |  |  |
| 2           | Digital Logic Gates                                                   | Symbols and truth tables, Classes of digital integrated circuits (Diode logic, DTL, TTL, ECL, MOSFET, CMOS), Transistor- Transistor Logic (TTL), Single Input TTL Inverter (transfer characteristic), Multi-<br>collector transistors, Propagation delays, Diode Logic, DTL NAND Gate (transfer characteristic, noise<br>immunity, fan out), Emitter Coupled Logic (transfer characteristic of OR/NOR gate, practical<br>implementation, MOSFET Logic- Review of MOSFET, MOSFET Inverter with active load, MOSFET<br>NOR and NAND gates, Complementary MOS (CMOS)-CMOS inverter, CMOS NOR and NAND,<br>Power dissipation in CMOS, Advantages/Disadvantages of CMOS | 08              | 2            |  |  |  |  |  |  |
| 3           | Digital Electronics<br>and Logic Gate                                 | Binary, Octal, Hexadecimal number system, Base conversion system, Bipolar junction and Field Effect transistor as switches, Basic digital logic gates (OR, AND and NOT, NOR, NAND and Exclusive OR), XOR gate, Boolean laws and theorem, Sum of Product (SOP) and Product of Sum (POS) method, Karnaugh map, pair, quad and octave, POS simplification, min term, max- term.                                                                                                                                                                                                                                                                                       | 08              | 3            |  |  |  |  |  |  |
| 4           | Application of Digital<br>Logic Gate                                  | Half adder and Full adder circuit, multiplexers, demultiplexer, Flip- Flop and Registers- RS Flip Flop, D- Flip Flop, T- Flip Flop, JK- Flip Flop, JK Master- Slave Flip Flop, Astable, Monostable and Bi-<br>stable multivibrator, types of registers, serial-in-serial out, serial-in-parallel out, parallel-in- serial out, parallel-in parallel out, Counters and Convertors- asynchronous and synchronous counter, Mod-3 and Mod-5 counters, shift counters, Digital-to Analog Converters-D/A converter, ladder network, A/D converters.                                                                                                                      | 08              | 4            |  |  |  |  |  |  |
| 5           | Microprocessor                                                        | Intel 8085 microprocessor architecture, interfacing devices, BUS timing, instruction set, simple illustrative program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08              | 5            |  |  |  |  |  |  |
| Referen     | ce Books:                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 1. Elect    | tronic Device and Circuit:                                            | R. Boylested and L. Nashelsky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |  |  |
| 2. Anal     | ysis and Design of Digital                                            | Integrated Circuit: Hodges, Jackson and Saleh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |  |  |
| 3. Digi     | 3. Digital Principles and Implementation: A.P. Malvino and D.P. Leach |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 4. Op-      | 4. Op- Amp and Linear Integrated Circuit: Ramakant A. Gayakwad        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| e-Learn     | e-Learning Source:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 1 https     | 1 https://archive.nptel.ac.in/courses/108/106/108106177/              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 2. https    | ://archive.nptel.ac.in/cour                                           | ses/108/105/108105113/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |  |  |  |  |
| 2. maps     | arean ve.npter.ac.m/cour                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |

3. https://archive.nptel.ac.in/courses/117/106/117106114/

|                  |     |     |     |     |     | Cou | arse Ar | ticulat | ion Ma | trix: (M | lapping | of COs w | vith POs a | and PSOs | s)   |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|---------|--------|----------|---------|----------|------------|----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9    | PO10     | PO11    | PO12     | PSO1       | PSO2     | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 1   | 1   |     | 1   | 1   |         |         |        |          |         |          | 1          | 2        | 3    | 3    | 2    | 1    |
| CO2              | 3   | 2   | 2   | 1   | 2   | 1   | 1       |         |        |          |         |          | 2          | 1        | 2    | 2    | 3    | 2    |
| CO3              | 2   | 1   | 3   |     | 3   | 2   | 1       |         |        |          |         |          | 2          | 3        | 2    | 1    | 2    | 2    |
| CO4              | 3   | 3   | 2   | 1   | 2   | 1   | 3       |         |        |          |         |          | 3          | 2        | 1    | 2    | 1    | 3    |
| CO5              | 1   | 1   | 3   |     | 1   |     |         |         |        |          |         |          | 1          | 1        | 3    | 2    | 1    | 1    |
|                  |     |     |     |     | 4 7 | C   |         |         |        |          | 1       |          |            | 1        |      |      |      |      |



| Effective from Session: 2020 | 0-21                               |                     |                                                 |   |   |   |   |
|------------------------------|------------------------------------|---------------------|-------------------------------------------------|---|---|---|---|
| Course Code                  | PY412                              | Title of the Course | Programming and Condensed Matter Physics<br>Lab | L | Т | Р | С |
| Year                         | 1 <sup>st</sup>                    | Semester            | $2^{nd}$                                        | 0 | 0 | 8 | 4 |
| Pre-Requisite                | B.Sc. with Physics and Mathematics | Co-requisite        |                                                 |   |   |   |   |
| Course Objectives            | ondens                             | ed matter           | r physics                                       | s |   |   |   |

|     | Course Outcomes                                                                                                                               |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1 | To determine solution of transcendental/polynomial equations and perform matrix operations using MATLAB.                                      |  |  |  |  |  |  |  |
| CO2 | 2 To determine numerical solution of differential equations and perform integration of given functions.                                       |  |  |  |  |  |  |  |
| CO3 | 3 To study the characteristics of a Geiger–Müller (GM) counter and demonstrate its utilization and also experimentally visualize Hall effect. |  |  |  |  |  |  |  |
| CO4 | To learn the technique of formation of nanoparticles .                                                                                        |  |  |  |  |  |  |  |
| CO5 | To analyze and evaluate magnetic, dielectric and transport properties of materials/semiconductors.                                            |  |  |  |  |  |  |  |

| Experiment<br>No.                                   | Title of the Experiment                                                                                                                                                  | Content of Unit                                                                                                                                          | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1                                                   | Newton – Raphson Method                                                                                                                                                  | Solution of transcendental or polynomial equations by the Newton Raphson method.                                                                         | 08              | 1            |  |  |  |  |  |
| 2                                                   | Curve Fitting and Correlation<br>Coefficeint                                                                                                                             | Linear curve fitting and calculation of linear correlation coefficient using MATLAB.                                                                     | 08              | 1            |  |  |  |  |  |
| 3                                                   | Simpson's Method                                                                                                                                                         | Numerical integration using the Simpson's method.                                                                                                        | 08              | 2            |  |  |  |  |  |
| 4                                                   | Numerical Differentiation                                                                                                                                                | Numerical first order differentiation of a given function.                                                                                               | 08              | 2            |  |  |  |  |  |
| 5                                                   | Solution of Equation                                                                                                                                                     | Matrix inversion and solution of simultaneous equation.                                                                                                  | 08              | 2            |  |  |  |  |  |
| 6                                                   | Geiger-Muller (GM) Counter                                                                                                                                               | To determine resolving/dead time of a GM counter by double source method.                                                                                | 08              | 3            |  |  |  |  |  |
| 7                                                   | Hall Effect                                                                                                                                                              | Study of Hall Voltage as a function of probe current and magnetic field and determination of Hall Coefficient and carrier concentration in given sample. | 08              | 3            |  |  |  |  |  |
| 8                                                   | 8 <b>Ball Mill</b> Preparation of nano-crystalline powder specimen by ball milling: analysis of their<br>x-ray spectra and particle size estimation by Scherrer formula. |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 9                                                   | 9 Hysteresis Loop Tracer Magnetic parameters of a magnetic material by hysteresis loop tracer. 08 5                                                                      |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 10                                                  | 10         Dielectric Constant         Dielectric constant of insulating and ferroelectric materials at room and elevated temperatures.         08         5             |                                                                                                                                                          |                 |              |  |  |  |  |  |
| Reference Books:                                    |                                                                                                                                                                          |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 1. Solid State Electronic Devices by B.G. Streetman |                                                                                                                                                                          |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 2. Electronic De                                    | 2. Electronic Devices and Circuit Theory by R.L. Boylested and L. Nashelsky                                                                                              |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 3. Integrated El                                    | 3. Integrated Electronics by J. Millman and C.C. Halkias                                                                                                                 |                                                                                                                                                          |                 |              |  |  |  |  |  |
| 4. Introduction                                     | 4. Introduction to Semiconductor Devices by M. S. Tyagi                                                                                                                  |                                                                                                                                                          |                 |              |  |  |  |  |  |

#### e-Learning Source:

1. https://nptel.ac.in/courses/117/103/117103063/

2. <u>https://nptel.ac.in/courses/108/102/108102095/</u>

3. <u>https://nptel.ac.in/courses/108/102/108102145/</u>

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 2                                                              | 3   |     | 1   | 1   | 2   |     |     |      |      |      | 1    | 2    | 3    | 1    | 3    | 1    |
| CO2              | 3   | 3                                                              | 1   |     | 2   | 3   | 3   |     |     |      |      |      | 2    | 2    | 1    | 2    | 1    | 1    |
| CO3              | 2   | 2                                                              | 2   |     | 1   | 1   | 2   |     |     |      |      |      | 2    | 1    | 1    | 3    | 2    | 1    |
| CO4              | 3   | 2                                                              | 1   |     | 2   | 2   | 3   |     |     |      |      |      | 1    | 3    | 2    | 2    | 1    | 2    |
| CO5              | 2   | 2                                                              | 3   |     | 1   | 1   | 2   |     |     |      |      |      | 2    | 1    | 2    | 1    | 2    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|